Syllabus for post of

1. Assistant Professor Biotechnology

2. Junior Scientific Officer

Biochemistry:

Unit I
Chemical basis of life; Composition of living matter; Water – properties, pH, ionization and hydrophobicity; Emergent properties of biomolecules in water; Biomolecular hierarchy; Macromolecules; Molecular assemblies; Structure-function relationships
Amino acids – structure and functional group properties; Peptides and covalent structure of proteins; Elucidation of primary and higher order structures; Evolution of protein structure; Structure-function relationships in model proteins like ribonuclease A, myoglobin, hemoglobin, chymotrypsin etc.; Tools to characterize expressed proteins.

Unit II
Enzyme catalysis – general principles of catalysis; Quantitation of enzyme activity and efficiency; Enzyme characterization and Michaelis-Menten kinetics; Relevance of enzymes in metabolic regulation, activation, inhibition and covalent modification; Single substrate enzymes

Unit III
Sugars - mono, di, and polysaccharides; Suitability in the context of their different functions- cellular structure, energy storage, signaling; Glycosylation of other biomolecules - glycoproteins and glycolipids Lipids - structure and properties of important members of storage and membrane lipids; lipoproteins

Unit IV
Biomembrane organization - sidedness and function; Membrane bound proteins - structure, properties and function; Transport phenomena; Nucleosides, nucleotides, nucleic acids - structure, diversity and function; sequencing; Brief overview of central dogma

Unit V
Bioenergetics-basic principles; Equilibria and concept of free energy; Coupled processes; Glycolytic pathway; Kreb’s cycle; Oxidative phosphorylation; Photosynthesis; Elucidation of metabolic pathways; Logic and integration of central metabolism; entry/ exit of various biomolecules from central pathways; Principles of metabolic regulation; Regulatory steps; Signals and second messengers.

Cell & Developmental Biology

Unit I
Cell Theory & Methods of Study
Microscope and its modifications – Light, phase contrast and interference, Fluorescence, Confocal, Electron (TEM and SEM), Electron tunneling and Atomic Force Microscopy, etc.

Membrane Structure and Function
Structural models; Composition and dynamics; Transport of ions and macromolecules; Pumps, carriers and channels; Endo- and Exocytosis; Membrane carbohydrates and their significance in cellular recognition; Cellular junctions and adhesions; Structure and functional significance of plasmodesmata.

Unit II
Organelles
Nucleus – Structure and function of nuclear envelope, lamina and nucleolus; Macromolecular trafficking;
Chromatin organization and packaging; Cell cycle and control mechanisms; Mitochondria – structure, organization of respiratory chain complexes, ATP synthase, Structure-function relationship; Mitochondrial DNA and male sterility; Origin and evolution; Chloroplast– Structure-function relationship; Chloroplast DNA and its significance; Chloroplast biogenesis; Origin and evolution.

Unit III
Endo-membrane System and Cellular Motility
Structure and function of microbodies, Golgi apparatus, Lysosomes and Endoplasmic Reticulum; Organization and role of microtubules and microfilaments; Cell shape and motility; Actin-binding proteins and their significance; Muscle organization and function; Molecular motors; Intermediate filaments; Extracellular matrix in plants and animals.

Unit IV
Cellular Movements and Pattern Formation
Laying of body axis planes; Differentiation of germ layers; Cellular polarity; Model plants like Fucus and Volvox; Maternal gene effects; Zygotic gene effects; Homeotic gene effects in Drosophila; Embryogenesis and early pattern formation in plants; Cell lineages and developmental control genes in Caenorhabditis.

Unit V
Differentiation of Specialized Cells
Stem cell differentiation; Blood cell formation; Fibroblasts and their differentiation; Cellular basis of immunity; Differentiation of cancerous cells and role of proto-oncogenes; Phase changes in Salmonella; Mating cell types in yeast; Surface antigen changes in Trypanosomes; Heterocyst differentiation in Anabaena; Sex determination in Drosophila.

Plant Meristem Organization and Differentiation
Organization of Shoot Apical Meristem(SAM); Organization of Root Apical Meristem(RAM); Pollen germination and pollen tube guidance; Phloem differentiation; Self-incompatibility and its genetic control; Embryo and endosperm development; Heterosis and apomixis.

Molecular Biology

Unit I
Genome organization
Organization of bacterial genome; Structure of eukaryotic chromosomes; Role of nuclear matrix in chromosome organization and function; Matrix binding proteins; Heterochromatin and Euchromatin; DNA reassociation kinetics(Cot curve analysis); Repetitive and unique sequences; Satellite DNA; DNA melting and buoyant density; Nucleosome phasing; DNase I hypersensitive regions; DNA methylation & Imprinting

Unit II
DNA Structure; Replication; Repair & Recombination
Structure of DNA - A-, B-, Z- and triplex DNA; Measurement of properties-Spectrophotometric, CD, AFM and Electron microscope analysis of DNA structure; Replication initiation, elongation and termination in prokaryotes and eukaryotes; Enzymes and accessory proteins; Fidelity; Replication of single stranded circular DNA; Gene stability and DNA repair- enzymes; Photoreactivation; Nucleotide excision repair; Mismatch correction; SOS repair; Recombination: Homologous and non-homologous; Site specific recombination; Chi sequences in prokaryotes; Gene targeting; Gene disruption; FLP/FRT and Cre/Lox recombination.

Unit III
Prokaryotic & Eukaryotic Transcription
Prokaryotic Transcription; Transcription unit; Promoters- Constitutive and Inducible; Operators; Regulatory elements; Initiation; Attenuation; Termination-Rho-dependent and independent; Anti-termination; Transcriptional regulation-Positive and negative; Operon concept-lac, trp, ara, his, and gal operons;
Transcriptional control in lambda phage; Transcript processing; Processing of tRNA and rRNA
Eucaryotic transcription and regulation; RNA polymerase structure and assembly; RNA polymerase
I, II, III; Eucaryotic promoters and enhancers; General Transcription factors; TATA binding proteins
(TBP) and TBP associated factors (TAF); Activators and repressors; Transcriptional and post-transcriptional
gene silencing

Unit IV
Post Transcriptional Modifications
Processing of hnRNA, tRNA, rRNA; 5'-Cap formation; 3'-end processing and polyadenylation; Splicing;
RNA editing; Nuclear export of mRNA; mRNA stability; Catalytic RNA.

Translation & Transport
Translation machinery; Ribosomes; Composition and assembly; Universal genetic code; Degeneracy of
codons;
Termination codons; Isoaccepting tRNA; Wobble hypothesis; Mechanism of initiation, elongation and
termination; Co- and post-translational modifications; Genetic code in mitochondria; Transport of proteins
and molecular chaperones; Protein stability; Protein turnover and degradation

Unit V
Mutations; Oncogenes and Tumor suppressor genes
Nonsense, missense and point mutations; Intragenic and Intergenic suppression; Frameshift mutations;
Physical, chemical and biological mutagens; Transposition - Transposable genetic elements in prokaryotes
and eukaryotes; Mechanisms of transposition; Role of transposons in mutation; Viral and cellular oncogenes;
Tumor suppressor genes from humans; Structure, function and mechanism of action of pRB and p53 tumor
suppressor proteins; Activation of oncogenes and dominant negative effect; Suppression of tumor suppressor
genes; Oncogenes as transcriptional activators.

Analytical Techniques
Unit I
Basic Techniques
Buffers; Methods of cell disintegration; Enzyme assays and controls; Detergents and membrane proteins;
Dialysis, Ultrafiltration and other membrane techniques

Spectroscopy Techniques
UV, Visible and Raman Spectroscopy; Theory and application of Circular Dichroism; Fluorescence; MS,
NMR, PMR, ESR and Plasma Emission spectroscopy

Unit II
Chromatography Techniques
TLC and Paper chromatography; Chromatographic methods for macromolecule separation - Gel permeation,
Ion exchange, Hydrophobic, Reverse-phase and Affinity chromatography; HPLC and FPLC; Criteria of
protein purity

Electrophoretic techniques
Theory and application of Polyacrylamide and Agarose gel electrophoresis; Capillary electrophoresis;
2D Electrophoresis; Disc gel electrophoresis; Gradient electrophoresis; Pulsed field gel
electrophoresis

Unit III
Centrifugation
Basic principles; Mathematics & theory (RCF, Sedimentation coefficient etc); Types of centrifuge -
Microcentrifuge, High speed & Ultracentrifuges; Preparative centrifugation; Differential & density gradient
centrifugation; Applications (Isolation of cell components); Analytical centrifugation; Determination of
molecular weight by sedimentation velocity & sedimentation equilibrium methods

Unit IV

Radioactivity
Radioactive & stable isotopes; Pattern and rate of radioactive decay; Units of radioactivity; Measurement of radioactivity; Geiger-Muller counter; Solid & Liquid scintillation counters (Basic principle, instrumentation & technique); Brief idea of radiation dosimetry; Cerenkov radiation; Autoradiography; Measurement of stable isotopes; Falling drop method; Applications of isotopes in biochemistry; Radiotracer techniques; Distribution studies; Isotope dilution technique; Metabolic studies; Clinical application; Radioimmunoassay

Unit V

Advanced Techniques:
Protein crystallization; Theory and methods; API-electrospray and MADI-TOF; Mass spectrometry; Enzyme and cell immobilization techniques; DNA & Peptide Synthesis.

Biostatistics & Computer Applications - 3 Credits

Unit I
Fundamental concepts in applied probability; Exploratory data analysis and statistical inference; Probability and analysis of one and two way samples; discrete and continuous probability models; Expectation and variance; Central limit theorem; Inference; Hypothesis; Critical region and error probabilities; Tests for proportion; Equality of proportions; equality of means of normal populations(variance known, variance unknown); Chi-square test for independence; P-value of the statistic; Confidence limits; Introduction to one way and two-way analysis of variance; Data transformations

Unit II
Elements of programming languages - C and PERL; Data base concept; Database management system; Database browsing and Data retrieval; Sequence database and genome database; Data Structures and Databases; Databases such as GenBank; EMBL; DDBJ; Swissprot; PIR; MIPS; TIGR; Hovergen; TAIR; PlasmoDB; ECDC; Searching for sequence database like FASTA and BLAST algorithm.

Unit III
Cluster analysis; Phylogenetic clustering by simple matching coefficients; Sequence Comparison; Sequence pattern; Regular expression based pattern; Theory of profiles and their use in sequence analysis; Markov models; Concept of HMMS; Baum-Welch algorithm; Use of profile HMM for protein family classification; Pattern recognition methods

Unit IV
Goals of a Microarray experiment; Normalization of Microarray data; Detecting differential gene expression; Principle component analysis; Clustering of microarray data; Structure determination by X-ray crystallography; NMR spectroscopy; PDB (Protein Data Bank) and NDB (Nucleic Acid Data Bank); File formats for storage and dissemination of molecular structure.

Unit V
Methods for modeling; Homology modeling; Threading and protein structure prediction; Structure-structure comparison of macromolecules with reference to proteins; Force fields; Molecular energy minimization; MonteCarlo and molecular dynamics simulation

Immunology

Unit I
Immunology - fundamental concepts and anatomy of the immune system
Components of innate and acquired immunity; Phagocytosis; Complement and Inflammatory responses; Haematopoiesis; Organs and cells of the immune system- primary and secondary lymphoid organs;
Lymphatic system; Lymphocyte circulation; Lymphocyte homing; Mucosal and Cutaneous associated Lymphoid tissue (MALT & CALT); Mucosal Immunity; Antigens - immunogens, haptens; Major Histocompatibility Complex - MHC genes, MHC and immune responsiveness and disease susceptibility, HLA typing

Unit II
Immune responses generated by B and T lymphocytes
Immunoglobulins-basic structure, classes and subclasses of immunoglobulins, antigenic determinants; Multigene organization of immunoglobulin genes; B-cell receptor; Immunoglobulin superfamily; Principles of cell signaling; Immunological basis of self–non-self discrimination; Kinetics of immune response, memory; B cell maturation, activation and differentiation; Generation of antibody diversity; T-cell maturation, activation and differentiation and T-cell receptors; Functional T Cell Subsets; Cell-mediated immune responses, ADCC; Cytokines-properties, receptors and therapeutic uses; Antigen processing and presentation- endogenous antigens, exogenous antigens, non-peptide bacterial antigens and super-antigens; Cell-cell co-operation, Hapten-carrier system

Unit III
Antigen-antibody interactions
Precipitation, agglutination and complement mediated immune reactions; Advanced immunological techniques - RIA, ELISA, Western blotting, ELISPOT assay, immunofluorescence, flow cytometry and immunoelectron microscopy; Surface plasmon resonance, Biosensor assays for assessing ligand–receptor interaction, CMI techniques- lymphoproliferation assay, Mixed lymphocyte reaction, Cell Cytotoxicity assays, Apoptotosis, Microarrays, Transgenic mice, Gene knock outs

Unit IV
Vaccinology
Active and passive immunization; Live, killed, attenuated, sub unit vaccines; Vaccine technology- Role and properties of adjuvants, recombinant DNA and protein based vaccines, plant-based vaccines, reverse vaccinology; Peptide vaccines, conjugate vaccines; Antibody genes and antibody engineering- chimeric and hybrid monoclonal antibodies; Catalytic antibodies and generation of immunoglobulin gene libraries.

Unit V
Clinical Immunology
Immunity to Infection: Bacteria, viral, fungal and parasitic infections (with examples from each group); Hypersensitivity – Type I-IV; Autoimmunity; Types of autoimmune diseases; Mechanism and role of CD4+ T cells; MHC and TCR in autoimmunity; Treatment of autoimmune diseases; Transplantation – Immunological basis of graft rejection; Clinical transplantation and immunosuppressive therapy; Tumor immunology – Tumor antigens; Immune response to tumors and tumor evasion of the immune system, Cancer immunotherapy; Immunodeficiency-Primary immunodeficiencies, Acquired or secondary immunodeficiencies.

Medical Microbiology
Unit I
Infections of the Gastrointestinal Tract
Amoebiasis; Giardiasis and cryptosporidiosis; Intestinal infection by nematodes; Intestinal infection by cestodes (taeniasis and H.nana infection); Trematodes; Bacterial food poisoning(toxic and infective); E.coli Diarrhoea; Cholera; Bacillary dysentery; Hepatitis

Unit II
Infections of the Respiratory system
Streptococcal infections; Viral infections; Diphtheria; Whooping cough; Bacterial pneumonias (Haemophilus and GNB, Pneumococcus/Legionella/ etc); Tuberculosis
Unit III

Pyrexial Illness
Malaria; Kala-azar; Leishmaniasis; Filaria; Enteric fever; Brucellosis; Rickettsial diseases; Leptospirosis and relapsing fever; Viral Hemorragic fever

Unit IV

Infections of the Nervous System
Viral encephalitis and Aseptic meningitis; Rabies; Cysticercosis and other CNS parasitic infections; Tetanus

Unit V

Sexually Transmitted Diseases and Congenital Infections
Herpes Simplex virus infections; HIV infection and AIDS; Chlamydial infection; Syphilis; Mycoplasma and Ureaplasma infection; Gonorrhea and other bacterial STD; Congenital viral infections; Toxoplasmosis

Genetic Engineering

Unit I

Basics Concepts
DNA Structure and properties; Restriction Enzymes; DNA ligase, Klenow enzyme, T4 DNA polymerase, Polynucleotide kinase, Alkaline phosphatase; Cohesive and blunt end ligation; Linkers; Adaptors; Homopolymeric tailing; Labeling of DNA: Nick translation, Random priming, Radioactive and non-radioactive probes, Hybridization techniques: Northern, Southern and Colony hybridization, Fluorescence in situ hybridization; Chromatin Immunoprecipitation; DNA-Protein Interactions-Electromobility shift assay; DNasel footprinting; Methyl interference assay

Unit II

Cloning Vectors
Plasmids; Bacteriophages; M13 mp vectors; PUC19 and Bluescript vectors, Phagemids; Lambda vectors; Insertion and Replacement vectors; EMBL; Cosmids; Artificial chromosome vectors (YACs; BACs); Animal Virus derived vectors-SV-40; vaccinia/bacculo & retroviral vectors; Expression vectors; pMal; GST; pETbased vectors; Protein purification; His-tag; GST-tag; MBP-tag etc.; Intein-based vectors; Inclusion bodies; Methodologies to reduce formation of inclusion bodies; Baculovirus and pichia vectors system, Plant based vectors, Ti and Ri as vectors, Yeast vectors, Shuttle vectors

Unit III

Cloning Methodologies
Insertion of Foreign DNA into Host Cells; Transformation; Construction of libraries; Isolation of mRNA and total RNA; cDNA and genomic libraries; cDNA and genomic cloning; Expression cloning; Jumping and hopping libraries; Southwestern and Far-western cloning; Protein-protein interactive cloning and Yeast two hybrid system; Phage display; Principles in maximizing gene expression

Unit IV

PCR and Its Applications
Primer design; Fidelity of thermostable enzymes; DNA polymerases; Types of PCR – multiplex, nested, reverse transcriptase, real time PCR, touchdown PCR, hot start PCR, colony PCR, cloning of PCR products; T vectors; Proof reading enzymes; PCR in gene recombination; Deletion; addition; Overlap extension; and SOEing; Site specific mutagenesis; PCR in molecular diagnostics; Viral and bacterial detection; PCR based mutagenesis, Mutation detection: SSCP, DGGE, RFLP, Oligo Ligation Assay (OLA), MCC (Mismatch Chemical Cleavage, ASA (Allele-Specific Amplification), PTT (Protein Truncation Test)

Unit V

Sequencing methods; Enzymatic DNA sequencing; Chemical sequencing of DNA; Automated DNA sequencing; RNA sequencing; Chemical Synthesis of oligonucleotides; Introduction of DNA into mammalian cells; Transfection techniques;
Microbial & Human Genetics

Unit I

Bacterial mutants and mutations
Isolation; useful phenotypes (auxotrophic; conditional lethal; resistant); Mutation rate; Types of mutations (base pair changes; frameshift; insertions; deletions; tandem duplication); Reversion vs. suppression; Mutagenic agents; Mechanisms of mutagenesis; Assay of mutagenic agents (Ames test)

Gene transfer in bacteria
History; Transduction – generalized and specialized; Conjugation – F, F', Hfr; F transfer; Hfr-mediated chromosome transfer; Transformation – natural and artificial transformation; Merodiploid generation; Gene mapping; Transposable genetic elements; Insertion sequences; Composite and Complex transposons; Replicative and non-replicative transposition; Genetic analysis using transposons.

Unit II

Bacteriophages and Plasmids
Bacteriophage – structure; assay; Lambda phage – genetic map, lysogenic and lytic cycles; Gene regulation; Filamentous phages such as M13; Plasmids – natural plasmids; their properties and phenotypes; Plasmid biology - copy number and its control; Incompatibility; Plasmid survival strategies; Antibiotic resistance markers on plasmids (mechanism of action and resistance); Genetic analysis using phage and plasmid

Restriction-modification systems
History; types of systems and their characteristics; Methylation-dependent restriction systems; applications.

Unit III

Mendelian Genetics
Introduction to human genetics; Background and history; Types of genetic diseases; Role of genetics in medicine; Human pedigrees; Patterns of single gene inheritance - autosomal recessive; autosomal dominant; X linked inheritance; Complicating factors - incomplete penetrance; variable expression; Multiple alleles; Co dominance; Sex influenced expression; Hemoglobinopathies - Genetic disorders of hemoglobin and their diseases.

Non Mendelian inheritance patterns
Mitochondrial inheritance; genomic imprinting; Lyon hypothesis; isodisomy. Complex inheritance - genetic and environmental variation; Heritability; Twin studies; Behavioral traits; Analysis of quantitative and qualitative traits

Unit IV

Cytogenetics
Cell division and errors in cell division; Non disjunction; Structural and numerical chromosomal abnormalities – deletion; duplication; translocation; Sex determination; Role of Y chromosome; Genetic recombination; Disorders of sex chromosomes and autosomes; Molecular cytogenetics – Fluorescence In Situ Hybridization (FISH); Comparative Genomic Hybridization (CGH).

Developmental genetics
Genes in early development; Maternal effect genes; Pattern formation genes; Homeotic genes; and Signaling and adhesion molecules.

Immunogenetics
Major histocompatibility complex; Immunoglobulin genes - tissue antigen and organ transplantation; Single gene disorders of immune system.
Unit V

Genetic variation
Mutations; kinds of mutation; agents of mutation; genome polymorphism; uses of polymorphism.

Gene mapping and human genome project
Physical mapping: linkage and association

Population genetics and evolution
Phenotype; genotype; gene frequency; Hardy-Weinberg law; Factors distinguishing Hardy-Weinberg equilibrium; Mutation selection; Migration; Gene flow; Genetic drift. Human genetic diversity; Origin of major human groups.

Genomics and Proteomics

Unit I

Introduction to Genomics
Structure and organization of prokaryotic and eukaryotic genomes - nuclear, mitochondrial and chloroplast genomes; Computational analysis of sequences- finding genes and regulatory regions; Gene annotation; Similarity searches; Pairwise and multiple alignments; Alignment statistics; Prediction of gene function using homology, context, structures, networks; Genetic variation-polymorphism, deleterious mutation; Phylogenetics; Tools for genome analysis—PCR, RFLP, DNA fingerprinting, RAPD, Automated DNA sequencing; Linkage and pedigree analysis; Construction of genetic maps; Physical maps, FISH to identify chromosome landmarks.

Unit II

Genome sequencing
Human genome project-landmarks on chromosomes generated by various mapping methods; BAC libraries and shotgun libraries preparation; Physical map-cytogenetic map, contig map, restriction map, DNA sequence; DNA sequencing and sequence assembly; Model organisms and other genome projects; Comparative genomics of relevant organisms such as pathogens and non-pathogens; Evolution of a pathogen e.g. Hepatitis C virus or a bacterial pathogen; Taxonomic classification of organisms using molecular markers- 16S rRNA typing/sequencing;

Unit III

DNA Microarray technology
Basic principles and design: cDNA and oligonucleotide arrays; Applications: Global gene expression analysis, Comparative transcriptomics, Differential gene expression; Genotyping/SNP detection; Detection technology; Computational analysis of microarray data.

Unit IV

Proteomics
Overview of protein structure-primary, secondary, tertiary and quarternary structure; Relationship between protein structure and function; Outline of a typical proteomics experiment; Identification and analysis of proteins by 2D analysis; Spot visualization and picking; Tryptic digestion of protein and peptide fingerprinting;
Mass spectrometry : ion source (MALDI, spray sources); analyzer (ToF, quadrupole, quadrupole ion trap) and detector; clinical proteomics and disease biomarkers; Prions; proteins in disease; Protein-protein interactions: Solid phase ELISA, pull-down assays (using GST-tagged protein), far western analysis, by surface plasmon resonance technique, Yeast two hybrid system, Phage display; Protein interaction maps; Protein arrays-definition, applications- diagnostics, expression profiling.

Unit V

Human disease genes; DNA polymorphism including those involved in disease; Hemoglobin and the anemias; Phenylketonuria (monogenic) and diabetes (multigenic) genetic disorders; ‘disease’ gene vs. ‘susceptibility’ gene; SNP detection: hybridization based assays (allele specific probes); Polymerization based assays (allelespecific nucleotide incorporation, allele-specific PCR); Ligation based assays (allele
specific oligonucleotide ligation); Polymorphism detection without sequence information: SSCP; Proteomics and drug discovery; High throughput screening for drug discovery; Identification of drug targets; Pharmacogenomics and pharmaco-gene-genetics and drug development; Toxicogenomics; Metagenomics.

Immunotechnology

Unit 1

Introduction to Immunotechnology

Kinetics of immune response, memory; Principles of Immunization; Techniques for analysis of Immune response

Unit 2

Antibody Related Techniques

Immu-no-chemistry of Antigens - Immunogenecity, Antigenecity, hap-tens, Toxins-Toxiods, Hapten carrier system; Genetic bases of immune response – Heterogeneicity; Role and properties of adjuvants, Immune modulators; B cell epitopes; Hybridoma Rabbit, human; Antigen – Antibody interaction, affinity, cross reactivity, specificity, epitope mapping; Immuno assays RIA, ELISA, Western blotting, ELISPOT assay, immunofluorescence, Surface plasmon resonance, Biosensor assays for assessing ligand – receptor interaction

Unit 3

New Generation Antibodies

Multigene organization of immunoglobulin genes, Ab diversity; Antibody engineering; Phage display libraries; Antibodies as in vitro and in vivo probes

Unit 4

CMI and Imaging techniques

CD nomenclature, Identification of immune Cells; Principle of Immuno-fluorescence Microscopy, Fluorochromes; Staining techniques for live cell imaging and fixed cells; Flow cytometry, Instrumentation, Applications; Cell Functional Assays – lymphoproliferation, Cell Cytotoxicity, mixed lymphocyte reaction, Apoptosis, Cytokine expression; Cell cloning, Reporter Assays, In–situ gene expression techniques; Cell imaging Techniques - *In vitro and In vivo*; Immuno-electron microscopy; *In vivo* cell tracking techniques; Microarrays; Transgenic mice, gene knock outs

Unit 5

Vaccine technology

Rationale vaccine design based on clinical requirements: Hypersensitivity, Immunity to Infection, Autoimmunity, Transplantation, Tumor immunology, immunodeficiency; Active immunization, live, killed, attenuated, Sub unit vaccines; Recombinant DNA and protein based vaccines, plant-based vaccines and reverse vaccinology; Peptide vaccines, conjugate vaccines; Passive Immunization; Antibody, Transfusion of immuno-competent cells, Stem cell therapy; Cell based vaccines

Molecular Diagnostics

Unit I

Host pathogen interactions in disease process; Protective immune response in Bacterial, Viral and Parasitic diseases; Cancer; Inappropriate Immune response; Disease pathology and clinical spectrum; Clinical diagnosis of diseases; Molecular Genetics of the host and the pathogen

Unit II

Biochemical disorders; Immune, Genetic and Neurological disorders; Molecular techniques for analysis of these disorders; Assays for the Diagnosis of inherited diseases; Bioinformatic tools for molecular diagnosis

Unit III
Antibody based diagnosis; Monoclonal antibodies as diagnostic reagents; Production of monoclonal antibodies with potential for diagnosis; Diagnosis of bacterial, viral and parasitic diseases by using ELISA and Western blot.

Unit IV
Isolation of DNA; purification and analysis; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Single nucleotide polymorphism and disease association; Two dimensional gene scanning

Unit V
Isolation of proteins and other molecules associated with disease; Process and their profiling for diagnosis; 2D analysis of such proteins by sequencing individual spots by Mass Spectrometry; Protein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Malaria and AIDS; Ethics in Molecular Diagnosis

Molecular Therapeutics - 3 Credits

Unit I
Gene therapy; Intracellular barriers to gene delivery; Overview of inherited and acquired diseases for gene therapy; Retro and adeno virus mediated gene transfer; Liposome and nanoparticles mediated gene delivery

Unit II
Cellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryonic and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; Role of adult and embryonic stem cells; Clinical applications; Ethical issues

Unit III
Recombinant therapy; Clinical applications of recombinant technology; Erythropoietin; Insulin analogs and its role in diabetes; Recombinant human growth hormone; Streptokinase and urokinase in thrombosis; Recombinant coagulation factors

Unit IV
Immunotherapy; Monoclonal antibodies and their role in cancer; Role of recombinant interferons; Immunostimulants; Immunosupressors in organ transplants; Role of cytokine therapy in cancers; Vaccines: types, recombinant vaccines and clinical applications

Unit V
Gene silencing technology; Antisense therapy; siRNA; Tissue and organ transplantation; Transgenics and their uses; Cloning; Ethical issues

IPR, Biosafety & Bioethics

Unit I
Introduction to Intellectual Property
Types of IP: Patents, Trademarks, Copyright & Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications, Protection of New GMOs; International framework for the protection of IP; IP as a factor in R&D; IPs of relevance to Biotechnology and few Case Studies; Introduction to History of GATT, WTO, WIPO and TRIPS

Unit II
Concept of ‘prior art’
Invention in context of “prior art”; Patent databases; Searching International Databases; Country-wise patent searches (USPTO, EPO, India etc.); Analysis and report formation

Basics of Patents
Types of patents; Indian Patent Act 1970; Recent Amendments; Filing of a patent application; Precautions before patenting-disclosure/non-disclosure; WIPO Treaties; Budapest Treaty; PCT and Implications; Role of a Country Patent Office; Procedure for filing a PCT application

Unit III
Patent filing and Infringement

Patent application- forms and guidelines, fee structure, time frames; Types of patent applications: provisional and complete specifications; PCT and convention patent applications; International patenting—requirement, procedures and costs; Financial assistance for patenting—introduction to existing schemes; Publication of patents—gazette of India, status in Europe and US

Patenting by research students, lecturers and scientists—University/organizational rules in India and abroad, credit sharing by workers, financial incentives

Patent infringement—meaning, scope, litigation, case studies and examples

Unit IV

Biosafety

Introduction; Historical Background; Introduction to Biological Safety Cabinets; Primary Containment for Biohazards; Biosafety Levels; Biosafety Levels of Specific Microorganisms; Recommended Biosafety Levels for Infectious Agents and Infected Animals; Biosafety guidelines—Government of India; Definition of GMOs & LMOs; Roles of Institutional Biosafety Committee, RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication; Overview of National Regulations and relevant International Agreements including Cartagena Protocol.

Unit V

Bioethics

Concepts; Philosophical considerations; Epistemology of Science; Ethical Terms; Principles & Theories; Relevance to Biotechnology; Ethics and the Law Issues: Genetic Engineering, Stem Cells, Cloning, Medical techniques, Transhumanism, Bioweapons; Research concerns—Animal Rights, Ethics of Human Cloning, Reproduction and Stem Cell Research; Emerging issues: Biotechnology’s Impact on Society; DNA on the Witness Stand—Use of genetic evidence in civil and criminal court cases; Challenges to Public Policy—To Regulate or Not to Regulate; Improving public understanding of biotechnology products to correct misconceptions
